Comparison of Machine-Learning Classification Models for Glaucoma Management

Author:

An Guangzhou12ORCID,Omodaka Kazuko3,Tsuda Satoru3,Shiga Yukihiro3ORCID,Takada Naoko3,Kikawa Tsutomu1,Nakazawa Toru34,Yokota Hideo14,Akiba Masahiro12ORCID

Affiliation:

1. R&D Division, Topcon Corporation, Tokyo, Japan

2. Cloud-Based Eye Disease Diagnosis Joint Research Team, RIKEN Center for Advanced Photonics, RIKEN, Wako, Japan

3. Tohoku University Graduate School of Medicine, Sendai, Japan

4. Image Processing Research Team, RIKEN Center for Advanced Photonics, RIKEN, Wako, Japan

Abstract

This study develops an objective machine-learning classification model for classifying glaucomatous optic discs and reveals the classificatory criteria to assist in clinical glaucoma management. In this study, 163 glaucoma eyes were labelled with four optic disc types by three glaucoma specialists and then randomly separated into training and test data. All the images of these eyes were captured using optical coherence tomography and laser speckle flowgraphy to quantify the ocular structure and blood-flow-related parameters. A total of 91 parameters were extracted from each eye along with the patients’ background information. Machine-learning classifiers, including the neural network (NN), naïve Bayes (NB), support vector machine (SVM), and gradient boosted decision trees (GBDT), were trained to build the classification models, and a hybrid feature selection method that combines minimum redundancy maximum relevance and genetic-algorithm-based feature selection was applied to find the most valid and relevant features for NN, NB, and SVM. A comparison of the performance of the three machine-learning classification models showed that the NN had the best classification performance with a validated accuracy of 87.8% using only nine ocular parameters. These selected quantified parameters enabled the trained NN to classify glaucomatous optic discs with relatively high performance without requiring color fundus images.

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3