Structured Polyvinyl Alcohol/Zeolite/Carbon Composites Prepared Using Supercritical Fluid Extraction Techniques as Adsorbent for Bioethanol Dehydration

Author:

Laksmono Joddy Arya12ORCID,Sudibandriyo Mahmud1ORCID,Saputra Asep Handaya1,Haryono Agus2

Affiliation:

1. Chemical Engineering Department, Faculty of Engineering, Universitas Indonesia (UI), Kampus UI, Depok 16424, Indonesia

2. Research Center for Chemistry-Indonesian Institute of Sciences (RCChem-LIPI), Kawasan PUSPIPTEK, Serpong Tangerang Selatan, Banten 15314, Indonesia

Abstract

Introduction. Adsorption is a purification process with a more efficient energy level than others. Adsorption performance is strongly influenced by the ability of the adsorbent to be used; therefore, the modification of the adsorbent becomes a very important key for the purification process that occurs. Methods. In this study, the preparation of composite adsorbents was carried out by combining polyvinyl alcohol (PVA), zeolite (Zeo), and activated carbon (AC) as precursors. The crosslinking process was fulfilled by adding glutaraldehyde to the precursor mixtures followed by a supercritical fluid CO2 extraction (SFE) technique to create conditions for the crosslinking process. The composites were analyzed using Braunner–Emmet–Teller (BET) surface area analysis, Fourier-transform infrared (FTIR), differential scanning calorimetry (DSC), and scanning electron microscopy with energy dispersive X-ray (SEM/EDX-mapping), while individual and composite adsorbents were evaluated for their ability in bioethanol dehydration at various initial concentrations of ethanol and temperature. Results. The BET characterization shows that composite preparation under supercritical CO2 conditions provides reasonable surface areas, which are proportional to the content of activated carbon. The crosslinking process has been described by FTIR data interpretation, showing that PVA and glutaraldehyde were properly distributed on Zeo and AC precursors. The DSC characterization results give information that PVA successfully forms hydrophilic composites within Zeo and AC. The SEM micrograph analysis shows the formation of pores on the surface and cross section in structured adsorbents. The experimental adsorption shows that an increasing amount of AC in the composites increases the capacity of water adsorption (i.e., 0.80 gram of water/gram of adsorbent for PVA/Zeo/AC = 1 : 1 : 1 at 22°C). However, the effect is not significant when the ratio of AC is less than 0.5. As expected, the lower temperature increases the adsorption capacity. Further, by using approximately 4.5 gram adsorbents composite in 30 ml of water-ethanol mixtures, high concentration of bioethanol (>99%) can be achieved at various temperatures from 22°C to 40°C and bioethanol initial concentration from 88% to 96%. Conclusion. The SFE technique provides distinguished adsorbents composite properties. Further, the new composites provide about four times better adsorption capacity than that showed in the individual adsorbents test. The addition of AC influences on increasing the capacity and adsorption kinetics value.

Funder

Universitas Indonesia

Publisher

Hindawi Limited

Subject

General Chemical Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3