Beneficial Effects of Coculturing Synovial Derived Mesenchymal Stem Cells with Meniscus Fibrochondrocytes Are Mediated by Fibroblast Growth Factor 1: Increased Proliferation and Collagen Synthesis

Author:

Song Xuanhe1,Xie Yaoping2,Liu Yang1,Shao Ming1,Wang Wenbo1ORCID

Affiliation:

1. Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China

2. Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China

Abstract

Meniscus reconstruction is in great need for orthopedic surgeons. Meniscal fibrochondrocytes transplantation was proposed to regenerate functional meniscus, with limited donor supply. We hypothesized that coculture of synovial mesenchymal stem cells (SSC) with meniscal fibrochondrocytes (me-CH) can support matrix production of me-CH, thus reducing the number of me-CH needed for meniscus reconstruction. A pellet coculture system of human SSC and me-CH was used in this study. Enhanced glycosaminoglycans (GAG) in coculture pellets were demonstrated by Alcian blue staining and GAG quantification, when compared to monoculture. More collagen synthesis was shown in coculture pellets by hydroxyproline assay. Increased proliferation of me-CH was observed in coculture. Data from BrdU staining and ELISA demonstrated that conditioned medium of SSCs enhanced the proliferation and collagen synthesis of me-CH, and this effect was blocked by neutralizing antibody against fibroblast growth factor 1 (FGF1). Western blot showed that conditioned medium of SSCs can activate mitogen-activated protein kinase (MAPK) signaling pathways by increasing the phosphorylation of mitogen-activated regulated protein kinase 1/2 (MEK) and extracellular-signal-regulated kinases 1/2 (ERK). Overall, this study provided evidence that synovial MSCs can support proliferation and collagen synthesis of fibrochondrocytes, by secreting FGF1. Coimplantation of SSC and me-CH could be a useful strategy for reconstructing meniscus.

Funder

Harbin Medical University

Publisher

Hindawi Limited

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3