Transcriptome and Molecular Endocrinology Aspects of Epicardial Adipose Tissue in Cardiovascular Diseases: A Systematic Review and Meta-Analysis of Observational Studies

Author:

Maghbooli Zhila1ORCID,Hossein-nezhad Arash23ORCID

Affiliation:

1. Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran

2. Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, 5th floor Shariati Hospital, North Kargar Avenue, Tehran 1411413137, Iran

3. Department of Medicine, Section of Endocrinology, Nutrition, and Diabetes, Vitamin D, Skin and Bone Research Laboratory, Boston University Medical Center, Boston, MA, USA

Abstract

The objective of this study was to perform a systematic review of published literature on differentially expressed genes (DEGs) in human epicardial adipose tissue (EAT) to identify molecules associated with CVDs. A systematic literature search was conducted in PubMed, SCOPUS, and ISI Web of Science literature databases for papers published before October 2014 that addressed EAT genes and cardiovascular diseases (CVDs). We included original papers that had performed gene expressions in EAT of patients undergoing open-heart surgery. The Reporting Recommendations for Tumor Marker Prognostic Studies (PRIMARK) assessment tool was also used for methodological quality assessment. From the 180 papers identified by our initial search strategy, 40 studies met the inclusion criteria and presented DEGs in EAT samples from patients with and without CVDs. The included studies reported 42 DEGs identified through comparison of EAT-specific gene expression in patients with and without CVDs. Among the 42 DEGs, genes involved in regulating apoptosis had higher enrichment scores. Notably, interleukin-6 (IL-6) and tumor protein p53 (TP53) were the main hub genes in the network. The results suggest that regulation of apoptosis in EAT is critical for CVD development. Moreover, IL-6 and TP53 as hub genes could serve as biomarkers and therapeutic targets for CVDs.

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3