Development and Characterization of a Nanobody against Human T-Cell Immunoglobulin and Mucin-3

Author:

Xia Mingyuan1,Hu Xiangnan2,Zhao Qiuxiang1,Ru Yi3,Wang He1ORCID,Zheng Fang4ORCID

Affiliation:

1. Department of Urology, The Second Affiliated Hospital of Air Force Military Medical University, Xi’an City, 710032 Shaanxi Province, China

2. No. 986 Hospital, Air Force Military Medical University, Xi’an City, 710054 Shaanxi Province, China

3. Department of Biochemistry and Molecular Biology, Basic Medical College, Air Force Military Medical University, Xi’an City, 710032 Shaanxi Province, China

4. The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

Monoclonal antibodies and antibody-derived biologics are essential tools for cancer research and therapy. The development of monoclonal antibody treatments for successful tumor-targeted therapies took several decades. A nanobody constructed by molecular engineering of heavy-chain-only antibody, which is unique in camel or alpaca, is a burgeoning tools of diagnostic and therapeutic in clinic. In this study, we immunized a 4-year-old female alpaca with TIM-3 antigen. Then, a VHH phage was synthesized from the transcriptome of its B cells by nested PCR as an intermediate library; the library selection for Tim-3 antigen is carried out in three rounds of translation. The most reactive colonies were selected by periplasmic extract monoclonal ELISA. The nanobody was immobilized by metal affinity chromatography (IMAC) purification with the use of a Ni-NTA column, SDS-PAGE, and Western blotting. Finally, the affinity of TIM3-specific nanobody was determined by ELISA. As results, specific 15 kD bands representing nanomaterials were observed on the gel and confirmed by Western blotting. The nanobody showed obvious specific immune response to Tim-3 and had high binding affinity. We have successfully prepared a functional anti-human Tim-3 nanobody with high affinity in vitro.

Funder

Foundation of the Central Academy of Medical Sciences

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3