miR-103a-3p Silencing Ameliorates Calcium Oxalate Deposition in Rat Kidney by Activating the UMOD/TRPV5 Axis

Author:

Cui Zenglin1ORCID,Li Yuwei2ORCID,Liu Gaorui1ORCID,Jiang Yanmeng1ORCID

Affiliation:

1. Department of Urology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China

2. Endoscopy Department, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China

Abstract

Maintaining the balance of calcium (Ca2+) metabolism in the kidney is crucial in preventing the formation of kidney stones. Functionally, the microRNA (miRNA) participating in this process needs to be unveiled. We induced NRK-52E cell injury by oxalate treatment. The role of transient receptor potential cation channel subfamily V member 5 (TRPV5) in oxalate-induced cells was studied by TRPV5 overexpression transfection, qRT-PCR, Western blot, MTT, and crystal adhesion detection. After identifying uromodulin (UMOD) expression in injured cells, we confirmed the interaction between TRPV5 and UMOD by coimmunoprecipitation (CoIP) and cell-surface biotinylation assays. The validation of UMOD-regulating TRPV5 in viability, crystal adhesion, and Ca2+ concentration of oxalate-induced cells was performed. Bioinformatics analysis and luciferase assay were used to identify the miRNA-targeting UMOD. The role of the miR-103a-3p-regulating UMOD/TRPV5 axis was detected by rescue experiments. We constructed a rat model with treatment of ethylene glycol (EG) to investigate the miR-103a-3p/UMOD/TRPV5 axis in vivo by hematoxylin-eosin (H&E) staining, Western blot, and immunohistochemistry (IHC). Upregulation of TRPV5 protected NRK-52E cells from oxalate-induced injury by enhancing cell viability and inhibiting CaOx adhesion. UMOD was depleted in oxalate-induced cells and positively interacted with TRPV5. UMOD silencing reversed the effect of TRPV overexpression on oxalate-induced cells. miR-103a-3p targeted UMOD and was mediated in the regulation of the UMOD/TRPV5 axis in oxalate-induced cells. Downregulating miR-103a-3p mitigated EG-induced CaOx deposition in kidney tissues in vivo by activating the UMOD/TRPV5 axis. miR-103a-3p silencing ameliorated CaOx deposition in the rat kidney by activating the UMOD/TRPV5 axis.

Publisher

Hindawi Limited

Subject

Biochemistry (medical),Clinical Biochemistry,Genetics,Molecular Biology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The role of uromodulin in cardiovascular disease: a review;Frontiers in Cardiovascular Medicine;2024-07-09

2. Non-Coding RNAs in Kidney Stones;Biomolecules;2024-02-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3