Efficient Cancelable Iris Template Generation for Wearable Sensors

Author:

Jeong Jae Yeol1,Jeong Ik Rae1ORCID

Affiliation:

1. School of Information Security, Korea University, 1, 5-Ka, Anam-dong Sungbuk-ku, Seoul 136-701, Republic of Korea

Abstract

When biometric authentication is performed on On-Body Wearable Wireless Networks, a cancelable template is useful to protect biometric information. A cancelable template generation method converts the original biometric information into irreversibly transformed information to protect the original biometric information. If a cancelable template is damaged or leaked, it can be replaced with another cancelable template. In 2017, Dwivedi et al. proposed a novel cancelable iris template generation scheme based on the randomized look-up table mapping. So far their scheme is the most accurate scheme with respect to EER compared to the previous cancelable iris template generation schemes. However, their scheme is not alignment-free and so is not efficient enough for wearable sensors. In the paper, we first suggest how to improve the accuracy of the Dwivedi et al.’s scheme using the partial sort technique. Our experiment result shows that our suggested scheme is more accurate than the Dwivedi et al.’s scheme under almost all parameter settings. More concretely, our scheme achieves EER 0.09%, whereas the Dwivedi et al.’s scheme achieves EER 0.43% in the best parameter settings for the CASIA-V3-Interval iris database. We also suggest how to improve the efficiency of the Dwivedi et al.’s scheme. Our second scheme is alignment-free by processing IrisCode column-wise, whereas the Dwivedi et al.’s scheme handles IrisCode row-wise. Our experiment shows that our second scheme is 15 times faster than the Dwivedi et al.’s scheme, so our scheme is efficient enough for wearable sensors. Though our second scheme has very high EER under some parameter settings, our second scheme achieves EER 0.53% in the best parameter settings for the CASIA-V3-Interval iris database.

Funder

MIST

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3