Structural Nonlinear Model Updating Based on an Improved Generative Adversarial Network

Author:

Yuan Zi-Qing1,Xin Yu12,Wang Zuo-Cai123ORCID,Ding Ya-Jie1,Wang Jun1,Wang Dong-Hui4

Affiliation:

1. School of Civil Engineering, Hefei University of Technology, Hefei 230009, Anhui, China

2. Anhui Engineering Laboratory for Infrastructural Safety Inspection and Monitoring, Hefei 230009, Anhui, China

3. Engineering Research Center of Safety-Critical Industrial Measurement and Control Technology of the Ministry of Education, Hefei 230009, China

4. China Railway Major Bridge Reconnaissance & Design Institute Co., Ltd., Wuhan 430056, Hubei, China

Abstract

This study proposes a novel nonlinear model updating approach based on an improved generative adversarial network (GAN). In the improved GAN, a convolutional neural network (CNN) surrogate model is added to the discriminator network to enhance the capability of the GAN to learn the complex mapping relationship between vibration responses and nonlinear model parameters. To avoid the gradient disappearance present in the traditional GAN, a combined objective function is added to the improved GAN model. In the network training process, the instantaneous amplitudes of the decomposed accelerations are extracted as input samples and the nonlinear model parameters are defined as the GAN output. When the improved GAN is trained, the trained network model is capable of estimating the nonlinear model parameters based on measured instantaneous acceleration amplitudes. To confirm the feasibility of the improved GAN for structural nonlinear model updating, a steel-concrete hybrid bridge tower subjected to seismic excitation is numerically simulated and the effects of different numbers of data points and noise levels are studied. Furthermore, the identification accuracy of the improved GAN is compared with the updated results. For experimental applications, the shake table test of a scaled steel-concrete hybrid bridge tower subjected to seismic excitations is employed to confirm the effectiveness of the proposed nonlinear model updating method. Both numerical and experimental results demonstrate that the improved GAN model is reliable and effective for the nonlinear model updating of structures subjected to seismic excitation.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanics of Materials,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3