A Novel Hybrid Model for Predicting Traffic Flow via Improved Ensemble Learning Combined with Deep Belief Networks

Author:

Rui Yikang123ORCID,Lu Wenqi123ORCID,Yi Ziwei123ORCID,Wu Renfei123ORCID,Ran Bin123ORCID

Affiliation:

1. School of Transportation, Southeast University, Nanjing, Jiangsu 211189, China

2. Joint Research Institute on Internet of Mobility, Southeast University and University of Wisconsin-Madison, Southeast University, Nanjing 211189, China

3. Jiangsu Key Laboratory of Urban ITS, Southeast University, Nanjing 211189, China

Abstract

The intelligent transportation system (ITS) plays an irreplaceable role in alleviating urban traffic congestion and realizing sustainable urban development. Accurate and efficient short-term traffic state forecasting is a significant issue in ITS. This study proposes a novel hybrid model (ELM-IBF) to predict the traffic state on urban expressways by taking advantage of both deep learning models and ensemble learning framework. First, a developed bagging framework is introduced to combine several deep belief networks (DBNs) that are utilized to capture the complicated temporal characteristic of traffic flow. Then, a novel combination method named improved Bayesian fusion (IBF) is proposed to replace the averaging method in the bagging framework since it can better fuse the prediction results of the component DBNs by assigning the reasonable weights to DBNs at each prediction time interval. Finally, the proposed hybrid model is validated with ground-truth traffic flow data captured by the remote traffic microwave sensors installed on the multiple road sections of 2nd Ring Road in Beijing. The experimental results illustrate that the ELM-IBF method can effectively capture sharp fluctuations in the traffic flow. Compared with several benchmark models (e.g., artificial neural network, long short-term memory neural network, and DBN), the ELM-IBF model reveals better performance in forecasting single-step-ahead traffic volume and speed. Additionally, it is proved that the ELM-IBF model is capable of providing stable and high-quality results in multistep-ahead traffic flow prediction.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3