Swarming Computational Procedures for the Coronavirus-Based Mathematical SEIR-NDC Model

Author:

Suantai Suthep12ORCID,Sabir Zulqurnain3ORCID,Raja Muhammad Asif Zahoor4ORCID,Cholamjiak Watcharaporn5ORCID

Affiliation:

1. Data Science Research Center, Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

2. Research Group in Mathematics and Applied Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

3. Department of Mathematics and Statistics, Hazara University, Mansehra, Pakistan

4. Future Technology Research Center, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan

5. School of Science, University of Phayao, Mae Ka, Phayao 56000, Thailand

Abstract

The motive of the current work is related to solving the coronavirus-based mathematical system of susceptible (S), exposed (E), infected (I), recovered (R), overall population (N), civic observation (D), and cumulative performance (C), called as SEIR-NDC. The numerical solutions of the SEIR-NDC model are presented by using the computational framework of artificial neural networks (ANNs) together with the swarming optimization procedures aided with the sequential quadratic programming. The swarming procedure based on the particle swarm optimization (PSO) works as a global search, while the sequential quadratic programming (SQP) is used as a local search algorithm. A merit function is constructed by using the nonlinear dynamics of the SEIR-NDC mathematical system based on its 7 classes, and the optimization of the merit function is performed through the PSOSQP. The numerical expressions of system are accessible with the ANNs using the PSOSQP optimization with 30 variables. The correctness of the stochastic computing scheme performances is verified by using the comparison of the obtained performances of the mathematical SEIR-NDC system and the reference Runge–Kutta scheme. Furthermore, the graphical illustrations of the performance indices, absolute error, and convergence curves are derived to validate the robustness of the proposed ANN-PSOSQP approach for the mathematical SEIR-NDC system.

Funder

Chiang Mai University

Publisher

Hindawi Limited

Subject

General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3