Electrical and Thermal Performances of a Single-Pass Double-Flow Photovoltaic-Thermal Collector Coupled with Nonuniform Cross-Section Rib

Author:

Choi Hwi-Ung1ORCID,Choi Kwang-Hwan2ORCID

Affiliation:

1. Industry-University Cooperation Foundation, Pukyong National University, Busan, Republic of Korea

2. Department of Refrigeration and Air-Conditioning Engineering, Pukyong National University, Busan, Republic of Korea

Abstract

The air-based photovoltaic-thermal collector (PVTC) is a system that can generate electricity and heated air simultaneously from solar energy. This study investigates the electrical and thermal performances of an air-based single-pass double-flow photovoltaic-thermal collector (SPDFPVTC) coupled with a nonuniform cross-section rib (NUCSR) under various operating conditions. The rib is installed at the rear of the photovoltaic panel to enhance the heat transfer performance between the photovoltaic panel and the flowing air. Based on the energy balance equations, a mathematical model of the proposed SPDFPVTC is established and validated by experimental results. The solar intensity, air mass flow rate, and wind speed are selected as operating conditions. The effects of these operating conditions on the electrical and thermal performance of the SPDFPVTC have been discussed. In addition, this study evaluates the daily performance of SPDFPVTC with and without NUCSR. The average electrical, thermal, and overall efficiency were 17.59%, 43.96%, and 61.55%, respectively, for SPDFPVTC with NUCSR and 16.97%, 38.87%, and 55.83%, respectively, for SPDFPVTC without NUCSR. Consequently, installing NUCSR could enhance the daily electrical, thermal, and overall energy output of SPDFPVTC by 4.33%, 13.23%, and 10.63%, respectively.

Publisher

Hindawi Limited

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3