Study on the Effects of Dust Particle Size and Respiratory Intensity on the Pattern of Respiratory Particle Deposition in Humans

Author:

Zhou Gang,Liu Zengxin,Shao Wenqi,Sun BiaoORCID,Li Lin,Liu Jianguo,Li Gang,Lv Xueqiang

Abstract

Nowadays, dust exposure pollution is receiving a lot of attention due to its significant impact on public health. To investigate the impact of dust particle size and human respiratory strength on respiratory particle deposition patterns, data was collected through on‐site surveys. The study analyzed the equivalent respiratory strength, dust environment characteristics, and bronchial particle escape and deposition patterns of humans in fully mechanized mining faces at various operating times. This was done using ergonomic energy consumption simulation experiments and a fluid–solid interaction method of CFD‐DEM. The findings revealed that as humans worked continuously for 5, 15, 30, 45, and 60 min, their respiratory intensity corresponded to 8, 18, 30, 42, and 50 L/min, respectively. According to the field investigation and particle size analysis, the particle size distribution of 1~5, 5~10, 10~20, 20~30, and 30~40 μm particles accounted for 36%, 26%, 15%, 11%, and 10%, respectively. In general, the deposition rate of dust was highest in the main bronchus of the respiratory tract, followed by the trachea area. Particles ranging from 5 to 10 μm in size were observed to have a higher likelihood of escaping from the tertiary bronchioles and entering the secondary bronchial regions. Conversely, particles larger than 20 μm exhibited a deposition rate of up to 80% in the tertiary bronchial regions. It was noted that the bronchial deposition rate of particles of varying sizes increased with respiratory strength, with smaller particles showing greater sensitivity to changes in respiratory strength in terms of the deposition fraction. Among the different particle sizes, the deposition rate of 5–10 μm particles exhibited the most variation with increasing respiration intensity, ranging up to 17%.

Funder

Shandong University of Science and Technology

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3