Paricalcitol Attenuates Metabolic Syndrome-Associated Heart Failure through Enhanced Mitochondrial Fusion

Author:

Nizami Hina L.1ORCID,Katare Parmeshwar B.1,Prabhakar Pankaj2ORCID,Adela Ramu3,Sarkar Soumalya1,Arava Sudheer4,Chakraborty Praloy5,Maulik Subir K.2,Banerjee Sanjay K.16ORCID

Affiliation:

1. Non-Communicable Disease Group, Translational Health Science and Technology Institute (THSTI), Faridabad 121001, India

2. Department of Pharmacology, All India Institute of Medical Science (AIIMS), New Delhi 110029, India

3. Department of Endocrinology, All India Institute of Medical Science (AIIMS), New Delhi 110029, India

4. Department of Pathology, All India Institute of Medical Science (AIIMS), New Delhi 110029, India

5. Cardiology Department, VMMC and Safdarjung Hospital, New Delhi 110029, India

6. Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, India

Abstract

Objectives. Transition from cardiac hypertrophy to failure involves adverse metabolic reprogramming involving mitochondrial dysfunction. We have earlier shown that vitamin D deficiency induces heart failure, at least in part, through insulin resistance. However, whether activation of vitamin D receptor (VDR) can attenuate heart failure and underlying metabolic phenotype requires investigation. Thus, we aimed to assess the cardioprotective potential of paricalcitol, a vitamin D receptor-activator, against cardiac hypertrophy and failure in high-fat high-fructose-fed rats. Methods. Male Sprague Dawley rats were fed control (Con) or high-fat high-fructose (HFHFrD) diet for 20 weeks. After 12 weeks, rats from HFHFrD group were divided into the following: HFHFrD, HFHFrD+P (paricalcitol i.p. 0.08 μg/kg/day) and HFHFrD+E (enalapril maleate i.p. 10 mg/kg/day). Intraperitoneal glucose tolerance test, blood pressure measurement, and 2D echocardiography were performed. Cardiac fibrosis was assessed by Masson’s trichrome staining of paraffin-embedded heart sections. Mitochondrial DNA and proteins, and citrate synthase activity were measured in rat hearts. VDR was silenced in H9c2 cardiomyoblasts, and immunoblotting was performed. Results. Paricalcitol improved glucose tolerance, serum lipid profile, and blood pressure in high-fat high-fructose-fed rats. Paricalcitol reduced cardiac wall thickness and increased ejection fraction in high-fat high-fructose-fed rats but had no effect on perivascular fibrosis. PGC1-α was upregulated in the HFHFrD+P group compared to the HFHFrD group, but there was no significant difference in mitochondrial content. Citrate synthase activity was significantly higher in the HFHFrD+P group compared to the HFHFrD group. Rat hearts of the HFHFrD+P group had significantly higher expression of mitofusins. H9c2 cells with VDR knockdown showed significantly lower expression of Mfn2. Improvement in the HFHFrD+P group was comparable with that in the HFHFrD+E group. Conclusions. Paricalcitol reverses cardiac dysfunction in rats with metabolic syndrome by enhancing mitochondrial fusion. We demonstrate repurposing potential of the drug currently used in end-stage kidney disease.

Funder

THSTI Core Funds

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3