A Novel Technique Based on Visual Words Fusion Analysis of Sparse Features for Effective Content-Based Image Retrieval

Author:

Yousuf Muhammad1ORCID,Mehmood Zahid1ORCID,Habib Hafiz Adnan2,Mahmood Toqeer2,Saba Tanzila3,Rehman Amjad4,Rashid Muhammad5ORCID

Affiliation:

1. Department of Software Engineering, University of Engineering and Technology, Taxila 47050, Pakistan

2. Department of Computer Science, University of Engineering and Technology, Taxila 47050, Pakistan

3. College of Computer and Information Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia

4. College of Computer and Information Systems, Al-Yamamah University, Riyadh 11512, Saudi Arabia

5. Department of Computer Engineering, Umm Al-Qura University, Makkah 21421, Saudi Arabia

Abstract

Content-based image retrieval (CBIR) is a mechanism that is used to retrieve similar images from an image collection. In this paper, an effective novel technique is introduced to improve the performance of CBIR on the basis of visual words fusion of scale-invariant feature transform (SIFT) and local intensity order pattern (LIOP) descriptors. SIFT performs better on scale changes and on invariant rotations. However, SIFT does not perform better in the case of low contrast and illumination changes within an image, while LIOP performs better in such circumstances. SIFT performs better even at large rotation and scale changes, while LIOP does not perform well in such circumstances. Moreover, SIFT features are invariant to slight distortion as compared to LIOP. The proposed technique is based on the visual words fusion of SIFT and LIOP descriptors which overcomes the aforementioned issues and significantly improves the performance of CBIR. The experimental results of the proposed technique are compared with another proposed novel features fusion technique based on SIFT-LIOP descriptors as well as with the state-of-the-art CBIR techniques. The qualitative and quantitative analysis carried out on three image collections, namely, Corel-A, Corel-B, and Caltech-256, demonstrate the robustness of the proposed technique based on visual words fusion as compared to features fusion and the state-of-the-art CBIR techniques.

Funder

Machine Learning Research Group, Prince Sultan University Riyadh

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3