TSVD Regularization-Parameter Selection Method Based on Wilson-θ and Its Application to Vertical Wheel-Rail Force Identification of Rail Vehicles

Author:

Wu Jiaxin1ORCID,Zhu Tao1ORCID,Wang Yijun2,Lei Cheng2,Xiao Shoune1

Affiliation:

1. State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, China

2. Henan Engineering Research Center of Rail Transit Intelligent Security, Zhengzhou Railway Vocational and Technical College, Zhengzhou, Henan 451460, China

Abstract

A parameter-selection method is proposed to improve the accuracy of the truncated singular value decomposition (TSVD) method, which is based on the Wilson-θ method and the principle of minimum response error, for dynamic load identification. First, using the Green kernel-function matrix, the dynamic load-identification model of the multi-degree-of-freedom system is established. Second, the response corresponding to the dynamic load is identified using the Wilson-θ method, and the minimum error between the response and the input response is obtained. Then, the best regularization parameters are obtained, and the dynamic load is identified using the TSVD regularization method. Finally, the SIMPACK dynamic model of a rail vehicle is established. Taking the German high-interference spectrum as the input, the axle-box displacement and the vertical wheel-rail force of each wheelset at speeds of 100, 160, and 200 km/h are simulated. Taking the simulated axle-box displacement response with 0%, 5%, and 10% noise as the input, the proposed load-identification model and regularization-parameter selection method are used to identify the vertical wheel-rail force of a rail vehicle. The effects of different track spectra on the identification results are considered. The results indicate that this method has a high identification accuracy for the wheel-rail vertical dynamic load. With an increase in the vehicle speed, the correlation coefficient for identifying the dynamic load decreases, but the correlation remains strong. At the speed of 200 km/h, when the input response noise level is 0%, the dynamic load identification correlation coefficient is 0.9556, which corresponds to extremely strong correlation. When the input response contains 5% noise, this method has stronger robustness than L-curve method, and the dynamic load identification correlation coefficient is 0.6354, which corresponds to strong correlation. The proposed load-identification model and regularization-parameter selection method have important theoretical and engineering application value for wheel-rail force monitoring and safety assessment of running trains.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Reference22 articles.

1. Force identification in time domain based on dynamic programming

2. Research of the structure load identification hybrid technology using kernel function and different regularization method;B. Miao;Journal of Vibration Engineering,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3