Cooperative Cloud-Edge Feature Extraction Architecture for Mobile Image Retrieval

Author:

He Chao1ORCID,Ma Gang2

Affiliation:

1. State Key Laboratory of Network and Switching Technology Institute, Beijing University of Posts and Telecommunications, Beijing, China

2. School of Mathematics and Statistics, Shandong University of Technology, Zibo, Shandong, China

Abstract

Mobile image retrieval greatly facilitates our lives and works by providing various retrieval services. The existing mobile image retrieval scheme is based on mobile cloud-edge computing architecture. That is, user equipment captures images and uploads the captured image data to the edge server. After preprocessing these captured image data and extracting features from these image data, the edge server uploads the extracted features to the cloud server. However, the feature extraction on the cloud server is noncooperative with the feature extraction on the edge server which cannot extract features effectively and has a lower image retrieval accuracy. For this, we propose a collaborative cloud-edge feature extraction architecture for mobile image retrieval. The cloud server generates the projection matrix from the image data set with a feature extraction algorithm, and the edge server extracts the feature from the uploaded image with the projection matrix. That is, the cloud server guides the edge server to perform feature extraction. This architecture can effectively extract the image data on the edge server, reduce network load, and save bandwidth. The experimental results indicate that this scheme can upload few features to get high retrieval accuracy and reduce the feature matching time by about 69.5% with similar retrieval accuracy.

Funder

Natural Science Foundation of Shandong Province

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3