An Efficient Parallelized Ontology Network-Based Semantic Similarity Measure for Big Biomedical Document Clustering

Author:

Li Meijing1ORCID,Chen Tianjie1ORCID,Ryu Keun Ho234ORCID,Jin Cheng Hao5ORCID

Affiliation:

1. College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China

2. Data Science Laboratory, Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh 700000, Vietnam

3. Biomedical Engineering Institute, Chiang Mai University, Chiang Mai 50200, Thailand

4. Department of Computer Science, College of Electrical and Computer Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea

5. ENN Research Institute of Digital Technology, Beijing 100096, China

Abstract

Semantic mining is always a challenge for big biomedical text data. Ontology has been widely proved and used to extract semantic information. However, the process of ontology-based semantic similarity calculation is so complex that it cannot measure the similarity for big text data. To solve this problem, we propose a parallelized semantic similarity measurement method based on Hadoop MapReduce for big text data. At first, we preprocess and extract the semantic features from documents. Then, we calculate the document semantic similarity based on ontology network structure under MapReduce framework. Finally, based on the generated semantic document similarity, document clusters are generated via clustering algorithms. To validate the effectiveness, we use two kinds of open datasets. The experimental results show that the traditional methods can hardly work for more than ten thousand biomedical documents. The proposed method keeps efficient and accurate for big dataset and is of high parallelism and scalability.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine Learning and Biomedical Sub-Terahertz/Terahertz Technology;Sub-Terahertz Sensing Technology for Biomedical Applications;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3