Affiliation:
1. Department of Materials Science and Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
2. Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
Abstract
Polyurethanes (PUs) are commonly used materials for medical devices. These devices are exposed repeatedly to radiation when patients undergo radiotherapy treatments. It has been found that peripherally inserted central catheters (PICCs) and central venous catheters (CVCs) fail at an increased rate (14.7% and 8.8%, respectively) when radiated. Currently, little research is available on increased failure seen in conjunction with radiation, but complex in vivo environments within a human patient make it difficult to isolate effects of individual variables. This research investigated effects of radiation in an aqueous environment to determine whether radiation combined with a mimicked in vivo environment is sufficient to change PU devices. The following dose rates were used in this study: 3.2 Gy·min−1, 4.5 Gy·min−1, 44 Gy·min−1, and 833 Gy·min−1. Samples were characterized in four main ways: cellular response, physical changes, chemical changes, and mechanical changes. Results reveal normal cellular response at all dose rates, indicating dose rate does not alter cellular adhesion or proliferation, and biocompatibility of the material is not being altered. Results from physical, chemical, and mechanical effects confirm that varying dose rates alone do not initiate material changes, which negates the hypothesis that varying dose rates of radiation contribute to the complications in PICC and CVCs.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献