Investigation into Polyurethane at Varying Dose Rates of Ionizing Radiation for Clinical Application

Author:

Cooke Shelley L.1ORCID,Whittington Abby R.12ORCID

Affiliation:

1. Department of Materials Science and Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA

2. Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA

Abstract

Polyurethanes (PUs) are commonly used materials for medical devices. These devices are exposed repeatedly to radiation when patients undergo radiotherapy treatments. It has been found that peripherally inserted central catheters (PICCs) and central venous catheters (CVCs) fail at an increased rate (14.7% and 8.8%, respectively) when radiated. Currently, little research is available on increased failure seen in conjunction with radiation, but complex in vivo environments within a human patient make it difficult to isolate effects of individual variables. This research investigated effects of radiation in an aqueous environment to determine whether radiation combined with a mimicked in vivo environment is sufficient to change PU devices. The following dose rates were used in this study: 3.2 Gy·min−1, 4.5 Gy·min−1, 44 Gy·min−1, and 833 Gy·min−1. Samples were characterized in four main ways: cellular response, physical changes, chemical changes, and mechanical changes. Results reveal normal cellular response at all dose rates, indicating dose rate does not alter cellular adhesion or proliferation, and biocompatibility of the material is not being altered. Results from physical, chemical, and mechanical effects confirm that varying dose rates alone do not initiate material changes, which negates the hypothesis that varying dose rates of radiation contribute to the complications in PICC and CVCs.

Publisher

Hindawi Limited

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3