Mitochondrial DNA D-Loop Diversity of the Helmeted Guinea Fowls in Kenya and Its Implications on HSP70 Gene Functional Polymorphism

Author:

Murunga Philip1,Kennedy Grace Moraa1,Imboma Titus2,Malaki Phillista2,Kariuki Daniel3,Ndiema Emmanuel4,Obanda Vincent5,Agwanda Bernard2,Lichoti Jacqueline Kasiiti6ORCID,Ommeh Sheila Cecily12ORCID

Affiliation:

1. Institute for Biotechnology Research (IBR), Jomo Kenyatta University of Agriculture and Technology (JKUAT), P.O. Box 62000, City Square 00200, Nairobi, Kenya

2. Department of Zoology, National Museums of Kenya, Kenya

3. Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Kenya

4. Department of Earth Sciences, National Museums of Kenya, Kenya

5. Department of Veterinary Services, Kenya Wildlife Service, Kenya

6. Directorate of Veterinary Services, State Department of Livestock, Ministry of Agriculture, Livestock, Fisheries and Irrigation, Kenya

Abstract

We analyzed variations in 90 mitochondrial DNA (mtDNA) D-loop and heat shock protein 70 (HSP70) gene sequences from four populations of domesticated helmeted Guinea fowls (70 individuals) and 1 population of wild helmeted Guinea fowls (20 individuals) in Kenya in order to get information about their origin, genetic diversity, and traits associated with heat stress. 90 sequences were assigned to 25 distinct mtDNA and 4 HSP70 haplotypes. Most mtDNA haplotypes of the domesticated helmeted Guinea fowls were grouped into two main haplogroups, HgA and HgB. The wild population grouped into distinct mtDNA haplogroups. Two mtDNA haplotypes dominated across all populations of domesticated helmeted Guinea fowls: Hap2 and Hap4, while the dominant HSP70 haplotype found in all populations was CGC. Higher haplotype diversities were generally observed. The HSP70 haplotype diversities were low across all populations. The nucleotide diversity values for both mtDNA and HSP70 were generally low. Most mtDNA genetic variations occurred among populations for the three hierarchical categories considered while most variations in the HSP70 gene occurred among individuals within population. The lack of population structure among the domestic populations could suggest intensive genetic intermixing. The differentiation of the wild population may be due to a clearly distinct demographic history that shaped its genetic profile. Analysis of the Kenyan Guinea fowl population structure and history based on mtDNA D-loop variations and HSP70 gene functional polymorphisms complimented by archaeological and linguistic insight supports the hypothesis that most domesticated helmeted Guinea fowls in Kenya are related to the West African domesticated helmeted Guinea fowls. We recommend more molecular studies on this emerging poultry species with potential for poverty alleviation and food security against a backdrop of climate change in Africa.

Funder

International Foundation of Science

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3