Characteristics of Progressive Damage of ZnO Nanowires during Contact Sliding under Relatively Low Loads

Author:

Kang Kyeong Hee1,Kim Hae Jin1,Kim Dae-Eun1

Affiliation:

1. Department of Mechanical Engineering, Yonsei University 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea

Abstract

ZnO nanowires have received much interest owing to their particular structural and piezoelectric properties. For widespread application of ZnO nanowires in various nanotechnologies, the mechanical reliability of the nanowires should be assessed. In this paper, the damage characteristics of vertically grown ZnO nanowires due to contact sliding against a 2 mm diameter steel ball under relatively low loads were investigated. Frictional behavior and wear characteristics of the specimens were assessed. Furthermore, contact sliding tests were performed inside an SEM to monitor the progression of damage of the nanowires. It was found that the friction coefficient was about 0.35 under all loads while the damage characteristics of the nanowires were quite different for each load. The large diameter nanowires tended to fracture earlier than the small diameter nanowires. Wear tests performed inside the SEM confirmed the surface damage characteristics observed during the friction tests.

Funder

National Research Foundation of Korea

Publisher

Hindawi Limited

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sliding and rolling frictional behavior of a single ZnO nanowire during manipulation with an AFM;Nanoscale;2013

2. Nano-scale wear: A review;International Journal of Precision Engineering and Manufacturing;2012-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3