Content-Enhanced Network Embedding for Academic Collaborator Recommendation

Author:

Chen Jie12ORCID,Wang Xin12ORCID,Zhao Shu12ORCID,Zhang Yanping12ORCID

Affiliation:

1. Key Laboratory of Intelligent Computing and Signal Processing, Ministry of Education, Anhui University, Hefei 230601, Anhui, China

2. School of Computer Science and Technology, Anhui University, Hefei 230601, China

Abstract

It is meaningful for a researcher to find some proper collaborators in complex academic tasks. Academic collaborator recommendation models are always based on the network embedding of academic collaborator networks. Most of them focus on the network structure, text information, and the combination of them. The latent semantic relationships exist according to the text information of nodes in the academic collaborator network. However, these relationships are often ignored, which implies the similarity of the researchers. How to capture the latent semantic relationships among researchers in the academic collaborator network is a challenge. In this paper, we propose a content-enhanced network embedding model for academic collaborator recommendation, namely, CNEacR. We build a content-enhanced academic collaborator network based on the weighted text representation of each researcher. The content-enhanced academic collaborator network contains intrinsic collaboration relationships and latent semantic relationships. Firstly, the weighted text representation of each researcher is obtained according to its text information. Secondly, a content-enhanced academic collaborator network is built via the similarity of the weighted text representation of researchers and intrinsic collaboration relationships. Thirdly, each researcher is represented as a latent vector using network representation learning. Finally, top- k similar researchers are recommended for each target researcher. Experiment results on the real-world datasets show that CNEacR achieves better performance than academic collaborator recommendation baselines.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The drivers, features, and influence of first scientific collaboration among core scholars from Chinese library and information field;Journal of the Association for Information Science and Technology;2024-03-20

2. Research Collaborator Recommendation System based on citations and Influential citations;2023 5th International Conference on Inventive Research in Computing Applications (ICIRCA);2023-08-03

3. Predicting coauthorship using bibliographic network embedding;Journal of the Association for Information Science and Technology;2022-09-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3