A Simulation Model for a Hybrid-Electric Craft in Restricted Waters

Author:

Mauro Francesco1,la Monaca Ubaldo1,Marinò Alberto1,Bucci Vittorio1ORCID

Affiliation:

1. Department of Engineering and Architecture, University of Trieste, Via Valerio 10, Trieste 34127, Italy

Abstract

Sustainable mobility is one of the most challenging issues for passenger transport inside environmental protected areas and ecologically fragile environments. To reduce the pollutant emissions, the adoption of electric or hybrid-electric solutions for crafts propulsion is a suitable option for green navigation. However, the operation in restricted basin leads also to specific critical issues for the vessel sailing, as dealing with shallow or restricted waters and transit under low air-gap bridges. The combination of these constraints with the adoption of a hybrid-electric propulsion system increases the design difficulties also for a small craft, requiring the use of advanced simulation models to assess the vessel performances. This work presents a simulation model for a small passenger craft that will operate in the Grado Lagoon. The model combines the hydrodynamic issues of manoeuvring and propulsion in restricted water with the simulation of the electric loads and capacity of the energy storage system installed onboard. The simulations performed with the developed simulation system are in accordance with data measured during trials on a prototype of the vessel. The developed model is a powerful tool for designers in order to rapidly assess the green capabilities of new projects since the early design stages.

Funder

Regione Autonoma Friuli Venezia Giulia

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Hybrid-Electric Passenger Vessel for Inland Waterway;2023 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC);2023-03-29

2. KISS (Keep It Sustainable and Smart): A Research and Development Program for a Zero-Emission Small Crafts;Journal of Marine Science and Engineering;2021-12-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3