Affiliation:
1. Department of Preventive Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110002, China
2. Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, China
Abstract
Background. Dental caries is one of the most common chronic diseases observed in elderly patients. The development of preventive strategies for dental caries in elderly individuals is vital. Objective. The objective of the present study was to construct a generalized regression neural network (GRNN) prediction model for the risk assessment of dental caries among the geriatric residents of Liaoning, China. Methods. A stratified equal-capacity random sampling method was used to randomly select 1144 elderly (65-74 years) residents (gender ratio 1 : 1) of Liaoning, China. Data for the oral assessment, including caries characteristics, and questionnaire survey from each participant were collected. Multivariate logistic regression analysis was then performed to identify the independent predictors. GRNN was applied to establish a prediction model for dental caries. The accuracy of the unconditional logistic regression and the GRNN early warning model was compared. Results. A total of 1144 patients fulfilled the requirements and completed the questionnaires. The caries rate was 68.5%, and the main associated factors were toothache history, residence area, smoking, and drinking. We randomly divided the data for the 1144 participants into a training set (915 cases) and a test set (229 cases). The optimal smoothing factor was 0.7, and the area under the receiver operating characteristic curve for the GRNN model was 0.626 (95% confidence interval, 0.544 to 0.708), with a
value of 0.002. In terms of consistency, sensitivity, and specificity, the GRNN model was better than the traditional unconditional multivariate logistic regression model. Conclusion. Geriatric (65-74 years) residents of Liaoning, China, have a high rate of dental caries. Residents with a history of toothache and smoking habits are more susceptible to the disease. The GRNN early warning model is an accurate and meaningful tool for screening, early diagnosis, and treatment planning for geriatric individuals with a high risk of caries.
Funder
National Natural Science Foundation of China
Subject
General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献