Dental Caries Prediction Based on a Survey of the Oral Health Epidemiology among the Geriatric Residents of Liaoning, China

Author:

Liu Lu12,Wu Wei2,Zhang Si-yu1,Zhang Kai-qiang1,Li Jian1,Liu Yang1,Yin Zhi-hua2ORCID

Affiliation:

1. Department of Preventive Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110002, China

2. Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, China

Abstract

Background. Dental caries is one of the most common chronic diseases observed in elderly patients. The development of preventive strategies for dental caries in elderly individuals is vital. Objective. The objective of the present study was to construct a generalized regression neural network (GRNN) prediction model for the risk assessment of dental caries among the geriatric residents of Liaoning, China. Methods. A stratified equal-capacity random sampling method was used to randomly select 1144 elderly (65-74 years) residents (gender ratio 1 : 1) of Liaoning, China. Data for the oral assessment, including caries characteristics, and questionnaire survey from each participant were collected. Multivariate logistic regression analysis was then performed to identify the independent predictors. GRNN was applied to establish a prediction model for dental caries. The accuracy of the unconditional logistic regression and the GRNN early warning model was compared. Results. A total of 1144 patients fulfilled the requirements and completed the questionnaires. The caries rate was 68.5%, and the main associated factors were toothache history, residence area, smoking, and drinking. We randomly divided the data for the 1144 participants into a training set (915 cases) and a test set (229 cases). The optimal smoothing factor was 0.7, and the area under the receiver operating characteristic curve for the GRNN model was 0.626 (95% confidence interval, 0.544 to 0.708), with a P value of 0.002. In terms of consistency, sensitivity, and specificity, the GRNN model was better than the traditional unconditional multivariate logistic regression model. Conclusion. Geriatric (65-74 years) residents of Liaoning, China, have a high rate of dental caries. Residents with a history of toothache and smoking habits are more susceptible to the disease. The GRNN early warning model is an accurate and meaningful tool for screening, early diagnosis, and treatment planning for geriatric individuals with a high risk of caries.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3