Design of Gain Scheduling Control Using State Derivative Feedback

Author:

Llins Lázaro Ismael Hardy1ORCID,Assunção Edvaldo1ORCID,Teixeira Marcelo C. M.1ORCID,Cardim Rodrigo1ORCID,Cadalso Mario R. R.1,Oliveira Diogo R. de2,da Silva Emerson R. P.3

Affiliation:

1. Department of Electrical Engineering, Ilha Solteira School of Engineering, São Paulo State University (UNESP), Control Research Laboratory, José Carlos Rossi Ave. 1370, 15385-000 Ilha Solteira, SP, Brazil

2. Federal Institute of Education, Science and Technology of Mato Grosso do Sul (IFMS), Campus of Três Lagoas, 79.641-162 Três Lagoas, MS, Brazil

3. Academic Department of Electrical Engineering, Federal Technological University of Paraná (UTFPR), Alberto Carazzai Ave. 1640, 86300-000 Cornélio Procópio, PR, Brazil

Abstract

In recent years, the study of systems subject to time-varying parameters has awakened the interest of many researchers. The gain scheduling control strategy guarantees a good performance for systems of this type and also is considered as the simplest to deal with problems of this nature. Moreover, the class of systems in which the state derivative signals are easier to obtain than the state signals, such as in the control for reducing vibrations in a mechanical system, has gained an important hole in control theory. Considering those ideas, we propose sufficient conditions via LMI for designing a gain scheduling controller using state derivative feedback. The D-stability methodology was used for improving the performance of the transitory response. Practical implementation in an active suspension system and comparison with other methods validates the efficiency of the proposed strategy.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3