Compact Microstrip-Based Textile Antenna for 802.15.6 WBAN-UWB with Full Ground Plane

Author:

Samal Purna B.1ORCID,Soh Ping Jack2ORCID,Zakaria Zahriladha3ORCID

Affiliation:

1. Electronics and Communication Engineering Department, College of Science and Technology, Rinchending, Phuentsholing, Bhutan

2. Advanced Communication Engineering (ACE) Centre of Excellence, School of Computer and Communication Engineering, Universiti Malaysia Perlis (UniMAP), Pauh Putra Campus, 02600 Arau, Perlis, Malaysia

3. Centre for Telecommunication Research and Innovation (CeTRI), Faculty of Electronic and Computer Engineering, Universiti Teknikal Malaysia Melaka (UTeM), 76100 Melaka, Malaysia

Abstract

The paper presents the design and investigation of a flexible all-textile antenna operating in the wireless body area network (WBAN) ultrawideband (UWB) specified by the IEEE 802.15.6 standard. The proposed antenna features an innovative and compact UWB radiator on top of the overall structure with a full ground plane on its reverse side. The radiator, which is based on a microstrip patch combined with multiple miniaturization and broadbanding methods, resulted in a simple topology and a compact size of 39mm×42mm×3.34mm (0.51×0.55×0.043λ). In comparison to the literature, the proposed structure is considered to be the most compact microstrip-based textile UWB antenna to date featuring a full ground plane. The choice of the commercial textiles is also made based on cost efficiency, ease of accessibility, and ease of fabrication using simple tools. Meanwhile, the full ground plane enables the antenna operation in the vicinity of the human body with minimal body coupling and radiation towards it, ensuring operational safety. Besides its operation in the mandatory channels of the WBAN-UWB low and high bands, the proposed antenna also operates and preserves its performance in five other optional channels of the high band when placed on the body and under bend conditions of 30° and 60°. The proposed antenna successfully achieved the specific absorption rate below the regulated limit specified by the Federal Communications Commission.

Funder

Ministry of Higher Education, Malaysia

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3