King-Type Derivative-Free Iterative Families: Real and Memory Dynamics

Author:

Chicharro F. I.1ORCID,Cordero A.1ORCID,Torregrosa J. R.1ORCID,Vassileva M. P.2ORCID

Affiliation:

1. Instituto Universitario de Matemática Multidisciplinar, Universitat Politècnica de València, València, Spain

2. Instituto Tecnológico de Santo Domingo (INTEC), Santo Domingo, Dominican Republic

Abstract

A biparametric family of derivative-free optimal iterative methods of order four, for solving nonlinear equations, is presented. From the error equation of this class, different families of iterative schemes with memory can be designed increasing the order of convergence up to six. The real stability analysis of the biparametric family without memory is made on quadratic polynomials, finding areas in the parametric plane with good performance. Moreover, in order to study the real behavior of the parametric class with memory, we associate it with a discrete multidimensional dynamical system. By analyzing the fixed and critical points of its vectorial rational function, we can select those methods with best stability properties.

Funder

Ministerio de Economía y Competitividad

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Three‐step iterative weight function scheme with memory for solving nonlinear problems;Mathematical Methods in the Applied Sciences;2023-07-06

2. An Efficient Optimal Derivative-Free Fourth-Order Method and Its Memory Variant for Non-Linear Models and Their Dynamics;Mathematical and Computational Applications;2023-03-22

3. Memory in the iterative processes for nonlinear problems;Mathematical Methods in the Applied Sciences;2022-09-26

4. Basin attractors for derivative-free methods to find simple roots of nonlinear equations;Journal of Numerical Analysis and Approximation Theory;2020-12-31

5. Derivative free iterative methods with memory having higher R-order of convergence;International Journal of Nonlinear Sciences and Numerical Simulation;2020-07-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3