Estimating the Ultimate Bearing Capacity for Strip Footing Near and within Slopes Using AI (GP, ANN, and EPR) Techniques

Author:

Ebid Ahmed M.1ORCID,Onyelowe Kennedy C.2ORCID,Arinze Emmanuel E.3

Affiliation:

1. Department of Structural Engineering, Faculty of Engineering and Technology, Future University, New Cairo, Egypt

2. Department of Civil and Mechanical Engineering, Kampala International University, Kampala, Uganda

3. Department of Civil Engineering, Michael Okpara University of Agriculture, Umudike, Nigeria

Abstract

Numerical and computational analyses surrounding the behavior of the bearing capacity of soils near or adjacent to slopes have been of great importance in earthwork constructions around the globe due to its unique nature. This phenomenon is encountered on pavement vertical curves, drainages, and vertical infrastructure foundations. In this work, multiple data were collected on the soil and footing interface parameters, which included width of footing, depth of foundation, distance of slope from the footing edge, soil bulk density, slope and frictional angles, and bearing capacity factors of cohesion and overburden pressure determined for the case of a foundation on or adjacent to a slope. The genetic programming (GP), evolutionary polynomial regression (EPR), and artificial neural network (ANN) intelligent techniques were employed to predict the ultimate bearing capacity of footing on or adjacent to a slope. The performance of the models was evaluated as well as compared their accuracy and robustness with the findings of Prandtl. The results were observed to show the superiority of GP, EPR, and ANN techniques over the computational works of Prandtl. In addition, the ANN outclassed the other artificial intelligence methods in the exercise.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Hardware and Architecture,Mechanical Engineering,General Chemical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3