On-Machine Optical Probe Based on Discrete Rotational Symmetric Triangulation

Author:

Zhang Xu1ORCID,Wang Jianxiang1ORCID,Fei Kai2ORCID,Zhang Quan1ORCID

Affiliation:

1. Shanghai University, School of Mechatronic Engineering and Automation, Department of Mechanical Engineering and Automation, No. 149, Yanchang Road, Shanghai 200072, China

2. United Automotive Electronic Systems Co., Ltd., No. 555, Rongqiao Road, Shanghai 201206, China

Abstract

In the field of modern manufacturing, probes have been playing a more and more crucial role. However, contact probes are unfit for measuring objects with soft surfaces or very tiny cavities and require radius compensation of stylus. In comparison, noncontact probes such as optical probes do not have to consider these problems and are well-performed in measurement. However, existing optical probes (triangulation) may fail to detect objects with rich spatial structures (due to the occlusion effect) and highly reflective curved surfaces (due to existence of highlight spots). Considering the problems, an optical probe based on discrete rotational symmetric triangulation is proposed in this paper. The emitting laser beam of the probe is the rotational axis and the five receiving optical paths (lenses and mirrors) are rotationally symmetrically distributed around the laser axis and are coimaged on a CMOS camera. Results of simulations and experiments show that the new-established prototype is designed with good robustness under various conditions such as different surface characteristics and different inclination degrees. The probe enables conducting real-time on-machine measurement without directional dependency with a resolution of 39 μm and repeatability accuracy of 0.72 μm.

Funder

key research project of Ministry of Science and Technology

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3