Affiliation:
1. Instituto Tecnológico de Aguascalientes, Aguascalientes 20256, Mexico
2. CONACYT, Ciudad de México 03940, Mexico
3. Universidad Autónoma de Aguascalientes, Aguascalientes 20131, Mexico
Abstract
This paper reports the preparation, evaluation, and comparison of alkaline and acidic heterogeneous carbon-based catalysts in the transesterification of safflower oil with methanol to obtain biodiesel. These catalysts were obtained from the pyrolysis of flamboyant pods and their functionalization and activation with potassium hydroxide, citric acid, tartaric acid, sulfuric acid, and calcium nitrate. Different routes for the preparation of these catalysts were tested and analyzed where the FAME formation was the target variable to be improved. Results showed that the catalyst prepared with potassium hydroxide and calcium nitrate achieved the highest FAME formation (i.e., 95%) and outperformed the catalysts prepared with calcium nitrate and other acids even after four regeneration-reaction cycles. The best properties of an alkaline catalyst could be associated with its specific surface area and contents of potassium and calcium moieties, which were higher than those observed for acidic catalysts. Transesterification rates for biodiesel production were better estimated with the pseudo-order kinetic model, which ranged from 0.0004 to 0.038 L/mol⋅min for alkaline and acidic catalysts.
Subject
General Chemical Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献