Some Insights to the Reuse of Dredged Marine Soils by Admixing with Activated Steel Slag

Author:

Chan Chee-Ming1,Abdul Jalil Ainun Nazhirin2

Affiliation:

1. Faculty of Engineering Technology, Universiti Tun Hussein Onn Malaysia, 86400 Batu Pahat, Johor, Malaysia

2. Faculty of Civil and Environmental Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Batu Pahat, Johor, Malaysia

Abstract

Regular dredging is necessary for the development of coastal regions and the maintenance of shipping channels. The dredging process dislodges sediments from the seabed, and the removed materials, termed dredged marine soils, are generally considered a geowaste for dumping. However, disposal of the dredged soils offshores can lead to severe and irreversible impact on the marine ecosystem, while disposal on land often incurs exorbitant costs with no guarantee of zero-contamination. It is therefore desirable to reuse the material, and one option is solidification with another industrial waste, that is, steel slag. This paper describes the exploratory work of admixing dredged marine soil with activated steel slag for improvement of the mechanical properties. An optimum activation concentration of NaOH was introduced to the soil-slag mixture for uniform blending. Specimens were prepared at different mix ratios then left to cure for up to 4 weeks. The unconfined compressive strength test was conducted to monitor the changes in strength at predetermined intervals. It was found that the strength does not necessarily increase with higher steel slag content, indicating an optimum slag content required for the maximum solidification effect to take place. Also, regardless of the slag content, longer curing time produces greater strength gain. In conclusion, steel slag addition to dredged sediments can effectively strengthen the originally weak soil structure by both the “cementation” and “filler” effects, though the combined effects were not distinguished in the present study.

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3