Impacts of Climatic Change on Reference Crop Evapotranspiration across Different Climatic Zones of Ningxia at Multi-Time Scales from 1957 to 2018

Author:

Zhao Ziyang1,Wang Hongrui1ORCID,Wang Cheng2,Li Wangcheng3,Chen Hao1,Gong Shuxin1

Affiliation:

1. Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, China

2. Environment Science Division, Argonne National Laboratory, Lemont, IL 60439, USA

3. School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, China

Abstract

The impact of global climate change on agroecosystems is growing, affecting reference crop evapotranspiration (ET0) and subsequent agricultural water management. In this study, the climate factors temporal trends, the spatiotemporal variation, and the climate driving factors of ET0 at different time scales were evaluated across the Northern Yellow River Irrigation Area (NYR), Central Arid Zone (CAZ), and Southern Mountain Area (SMA) of Ningxia based on 20 climatic stations’ daily data from 1957 to 2018. The results showed that the Tmean (daily mean air temperature), Tmax (daily maximum air temperature), and Tmin (daily minimum air temperature) all had increased significantly over the past 62 years, whilst RH (relative humidity), U2 (wind speed at 2 m height), and SD (sunshine duration) had significantly decreasing trends across all climatic zones. At monthly scale, the ET0 was mainly concentrated from April to September. And at annual and seasonal scales, the overall increasing trends were more pronounced in NX, NYR, and SMA, while CAZ was the opposite. For the spatial distribution, ET0 presented a trend of rising first and then falling at all time scales. The abrupt change point for climatic factors and ET0 series was obtained at approximately 1990 across all climatic zones, and the ET0 had a long period of 25a and a short period of 10a at annual scale, while it was 15a and 5a at seasonal scale. RH and Tmax were the most sensitive climatic factors at the annual and seasonal scales, while the largest contribution rates were Tmax and SD. This study not only is important for the understanding of ET0 changes but also provides the preliminary and elementary reference for agriculture water management in Ningxia.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3