Influence of Deviatoric Stress on the Deformation and Damage Evolution of Surrounding Rock under Unloading Conditions

Author:

Hou Gongyu12,Liang Jinping1ORCID,Jing Haoyong1,Tan Jinxin1,Zhang Yongkang1,Yang Xi1,Xie Xin1

Affiliation:

1. School of Mechanics and Civil Engineering, China University of Mining and Technology, Beijing 100083, China

2. School of Mining Engineering and Geology, Xinjiang Institute of Engineering, Urumqi 830091, China

Abstract

The study of the deformation and damage evolution behaviour of surrounding rock under excavation unloading conditions is of vital importance for a deep understanding of the mechanism of roadway failure. In this study, unloading testing using a partially hollow thick-walled cylinder cement mortar specimen with dimensions of 280 mm (height) × 200 mm (outer diameter) × 60 mm (inner diameter) and a solid height of 60 mm at the bottom was performed to investigate the deformation response and damage failure evolution characteristics of the surrounding rock. The experimental results showed that the higher deviatoric stress level accelerated the damage development caused by the unloading effect and improved the expansion rate of the internal cracks, which led to a higher radial strain rate, total strain, and acoustic emission hits. When deviatoric stress increased to a relatively higher level, the radial strain rates were highly unstable, and the surrounding rock near or at the opening free surface was damaged locally and regionally. During the failure process of the specimen, the generation of the deformation and damage in the unloading stage was more alive (as indicated by the growth rate). Nevertheless, the main deformation and damage to the surrounding rock were generated and accumulated in the maintaining stage after unloading.

Funder

National Key Project of National Natural Science Foundation and Shenhua Group Corporation Limited of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3