Optimization of Switching Control and Microgrid Energy Management System with Alternate Arm Converter Based on Bacterial Foraging Algorithm

Author:

Rama S. T.12ORCID,Rajini V.3ORCID

Affiliation:

1. Research Scholar, Department of EEE, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Chennai, Tamilnadu, India

2. Department of EEE, Dr.M.G.R Educational and Research Institute, Maduravoyal, Chennai, Tamilnadu, India

3. Department of EEE, SSN College of Engineering, Kalavakkam, Chennai, Tamilnadu, India

Abstract

The global demand of electrical power has increased enormously due to various reasons such as fast-changing and challenging technologies, climatic change, economic growth, and lifestyle of mankind. Due to global warming issues and the depletion of conventional sources of power generation, the utilization of renewable energy sources has drastically increased. So, many challenges exist in integrating the microgrid with AC grid and load. The alternative arm converter (AAC) is among the most innovative converter topologies used in high voltage direct current (HVDC) applications. This research work presents a new control strategy to generate pulses to trigger the switches in the AAC in a proper sequence to obtain a smooth output waveform. The AAC output is controlled by implementing various controllers such as the proportional-integral-derivative (PID) controller, fractional order PID (FOPID) controller, and FOPID controller tuned by metaheuristic algorithm-bacterial foraging optimization technique (BFOT). Also, a comparative analysis is performed based on the spectral analysis of the output voltage obtained. In comparison to other controllers, the FOPID controller optimized by the bacterial foraging optimization technique (BFOT) produced the least total harmonic distortion (THD) of the AAC output voltage. In addition, this paper also discusses about the performance and analysis on the design of an energy management system (EMS) to optimally utilize the energy sources such as PV system, wind system, and battery based on their availability which feed the AAC. The energy management system controls the entire integrated system in association with an integrated CUK-SEPIC converter to fulfil the load demand at the point of common coupling, either from the microgrid or the AC grid. A nine-level AAC model is designed integrating the microgrid, grid, and industrial loads with an energy management system using MATLAB/Simulink. The performance parameters of the entire model are analysed at every stage to provide stabilized output to meet the load demand.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A review of control strategies for optimized microgrid operations;IET Renewable Power Generation;2024-07-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3