Mixed Convection and Thermally Radiative Flow of MHD Williamson Nanofluid with Arrhenius Activation Energy and Cattaneo–Christov Heat-Mass Flux

Author:

Eswaramoorthi S.1ORCID,Alessa Nazek2ORCID,Sangeethavaanee M.1ORCID,Kayikci Safak3ORCID,Namgyel Ngawang4ORCID

Affiliation:

1. Department of Mathematics, Dr. N. G. P. Arts and Science College, Coimbatore, Tamil Nadu, India

2. Department of Mathematical Sciences, Faculty of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia

3. Department of Computer Engineering, Bolu Abant Izzet Baysal University, Bolu, Turkey

4. Department of Humanities and Management, Jigme Namgyel Engineering College, Royal University of Bhutan, Dewathang, Bhutan

Abstract

In this paper, we explored the impact of thermally radiative MHD flow of Williamson nanofluid over a stretchy plate. The flow in a stretchy plate is saturated via Darcy–Forchheimer relation. Cattaneo–Christov heat-mass flux theory is adopted to frame the energy and nanoparticle concentration equations. Additionally, the mass transfer analysis is made by activation energy and binary chemical reaction. Activation energy is invoked through the modified Arrhenius function. The intention of the current investigation is to enhance the heat transfer rate in industrial processes. The non-Newtonian nanofluids have more prominent thermal characteristics compared to ordinary working fluids. The governing models are altered into ODE models, and these models are numerically solved by applying the MATLAB bvp4c algorithm. The graphical and tabular interpretations have scrutinized the impact of sundry distinct parameters. The fluid speed escalates for enhancing the Richardson number, and it falls off for higher values of the Weissenberg number. It is noticed that the fluid temperature declines for higher values of the Brownian motion parameter and it grows for larger values of the thermophoresis parameter. The activation energy enriches the heat transfer gradient and suppresses the local Sherwood number. Additionally, the more significant heat transfer gradient occurs in heat-absorbing nonradiative viscous nanofluid and a smaller heat transfer gradient occurs in heat-generating radiative Williamson nanofluid. Also, we noticed that a higher heat transfer gradient appears in the Fourier model than in the Catteneo–Christov model. In addition, the comparative results are confirmed and reached an outstanding accord.

Funder

Princess Nourah Bint Abdulrahman University

Publisher

Hindawi Limited

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3