Analysis of Data Interaction Process Based on Data Mining and Neural Network Topology Visualization

Author:

Dai Nina1ORCID

Affiliation:

1. Shanghai Donghai Vocational & Technical College, Shanghai 200241, China

Abstract

This paper addresses data mining and neural network model construction and analysis to design a data interaction process model based on data mining and topology visualization. This paper performs preprocessing data operations such as data filtering and cleaning of the collected data. A typical multichannel convolutional neural network (MCNN) in deep learning techniques is applied to alert students’ academic performance. In addition, the network topology of the CNN is optimized to improve the performance of the model. The CNN has many hyperparameters that need to be tuned to construct an optimal model that can effectively interact with the data. In this paper, we propose a method to visualize the network topology within unstable regions to address the current problem of lacking an effective way to layout the network topology into specified areas. The technique transforms the network topology layout problem within the unstable region into a circular topology diffusion problem within a convex polygon, ensuring a clear, logical topology connection, and dramatically reducing the gaps in the area, making the layout more uniform beautiful. This paper constructs a real-time data interaction model based on JSON format and database triggers using message queues for reliable delivery. A platform-based real-time data interaction solution is designed by combining the timer method with the original key. The solution designed in this paper considers the real-time accuracy, security and reliability of data interaction. It satisfies the platform’s initial and newly discovered requirements for data interaction.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3