Lysophosphatidic Acid Induced Apoptosis, DNA Damage, and Oxidative Stress in Spinal Cord Neurons by Upregulating LPA4/LPA6 Receptors

Author:

Yang Yifan1,Xu Jing1,Su Qingxin1,Wu Yiran1,Li Qizheng1,Ma Zongren2,Ding Tao1ORCID

Affiliation:

1. Department of Rehabilitation Medicine, First Affiliated Hospital of Kunming Medical University, No 295 Xichang Road, Xishan District, Kunming 650032, China

2. Department of Traditional Chinese Medicine, First Affiliated Hospital of Kunming Medical University, No 295 Xichang Road, Xishan District, Kunming 650032, China

Abstract

Lysophosphatidic acid (LPA) has disruptive effects on lumbar spinal stenosis (LSS). Recently, LPA has been reported to be involved in spinal cord neuronal injury and toxicity, promoting the pathogenesis of LSS. However, the exact effects of LPA on spinal cord neurons remain unknown. The purpose of this study is to investigate the effects of LPA (18 : 1) on spinal cord neuronal cytotoxicity, apoptosis, DNA damage, and oxidative stress. After clinical detection of LPA secretion, spinal cord neurons were treated with LPA (18 : 1); cell viability was analyzed by MTT assay, and LDH leakage was detected by LDH kit; cell apoptosis was detected by flow cytometry; ROS production was measured by DCFDA staining and MitoSOX Red Staining; the activation of the Gα12/Gα13 signaling pathway was detected by serum response factor response element (SRF-RE) luciferase reporter gene; the relationship among LPA, LPA4/6, and ROCK was examined by western blotting. In spinal cord neurons treated with LPA (18 : 1), cellular activity decreased and LDH release increased. The Rho kinase inhibitor (Y-27632) can attenuate LPA-induced apoptosis, DNA damage, and oxidative stress in spinal cord neurons. Moreover mechanistic investigation indicated that LPA (18 : 1) activates Gα12/13–Rho–ROCK2-induced apoptosis, DNA damage, and oxidative stress in spinal cord neurons by upregulating LPA4/LPA6 receptors. Further, the Rho kinase inhibitor Y-27632 attenuates the effects of LPA by downregulating LPA4/LPA6 receptors. Taken together, the possible mechanism by which LPA secretion in LSS patients aggravates patient injury was further elucidated using an LPA-induced spinal cord neuronal injury cell model in vitro.

Funder

Yunnan Science and Technology Department

Publisher

Hindawi Limited

Subject

Cell Biology,Immunology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3