Ultrasound Lung Image under Artificial Intelligence Algorithm in Diagnosis of Neonatal Respiratory Distress Syndrome

Author:

Wu Yuhan1ORCID,Zhao Sheng1ORCID,Yang Xiaohong1ORCID,Yang Chunxue2ORCID,Shi Zhen1ORCID,Liu Qin1ORCID,Wang Yubo1ORCID,Qin Meilan1ORCID,Zhang Li1ORCID

Affiliation:

1. Department of Ultrasound, Maternal and Child Health Hospital of Hubei Province, Wuhan 430070, China

2. Department of Ultrasound, Caidian District People’s Hospital of Wuhan, Hubei Province 430100, China

Abstract

In order to analyze the application of ultrasonic lung imaging diagnosis model based on artificial intelligence algorithm in neonatal respiratory distress syndrome (NRDS), an ultrasonic lung imaging diagnosis model based on a deep residual network (DRN) was proposed. In this study, 90 premature infants in the hospital were selected as the research object and divided into the experimental group (45 cases) and control group (45 cases) according to whether or not they have NRDS. DRN was compared with the deep residual network (DRWSR) based on wavelet domain, deep residual network detection with normalization framework (Fisher-DRN), and distorted image edge detection preprocessor (DIEDP). Then, it was applied to the diagnosis of NRDS. The clinical data and ultrasound imaging results of infants with NRDS and ordinary premature infants were compared. The results showed that the gestational age, birth weight, and Apgar scores of the NRDS group were remarkably lower than those of ordinary children ( P < 0.05 ). In addition, the segmentation accuracy, image feature extraction accuracy, algorithm convergence, and time loss of the DRN algorithm were better than the other three algorithms, and the differences were considerable ( P < 0.05 ). In children with NRDS, the positive rate of abnormal pleural line, disappearance of A line, appearance of B line, and alveolar interstitial syndrome (AIS) test in the results of lung ultrasound examination in children with NRDS were all 100%. The lung consolidation became 70.8%, and the white lung-like change was 50.1%, both of which were higher than those of ordinary preterm infants, and the differences were considerable ( P < 0.05 ). The diagnostic model of this study predicted that the AUC area of grade 1-2, grade 2-3, and grade 3-4 NRDS were 0.962, 0.881, and 0.902, respectively. To sum up, the ultrasound lung imaging diagnosis model based on the DRN algorithm had good diagnostic performance in children with NRDS and can provide useful information for clinical NRDS diagnosis and treatment.

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3