Estimating Mental Health Conditions of Patients with Opioid Use Disorder

Author:

Minnerly Christopher12,Bressler Steven L.34,Shokry Ibrahim M.15,Tao Rui1ORCID

Affiliation:

1. Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA

2. FHE Health, Deerfield Beach, FL, USA

3. Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, USA

4. Department of Psychology, Florida Atlantic University, Boca Raton, FL, USA

5. Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis

Abstract

Objectives. Noninvasive estimation of cortical activity aberrance may be a challenge but gives valuable clues of mental health in patients. The goal of the present study was to characterize specificity of electroencephalogram (EEG) electrodes used to assess spectral powers associated with mental health conditions of patients with opioid use disorder. Methods. This retrospective study included 16 patients who had been diagnosed with opioid use disorder in comparison with 16 sex- and age-matched healthy controls. EEG electrodes were placed in the frontal (FP1, FP2, F3, F4, F7, F8, and Fz), central (C3, C4, and Cz), temporal (T3, T4, T5, and T6), parietal (P3, P4, and Pz), and occipital scalp (O1 and O2). Spectral powers of δ, θ, α, β, and γ oscillations were determined, and their distribution was topographically mapped with those electrodes on the scalp. Results. Compared to healthy controls, the spectral powers at low frequencies (<8 Hz; δ and θ) were increased in most electrodes across the scalp, while powers at the high frequencies (>12 Hz; β and γ) were selectively increased only at electrodes located in the frontal and central scalp. Among 19 electrodes, F3, F4, Fz, and Cz were highly specific in detecting increases in δ, θ, β, and γ powers of patients with opioid use disorders. Conclusion. Results of the present study demonstrate that spectral powers are topographically distributed across the scalp, which can be quantitatively characterized. Electrodes located at F3, F4, Fz, and Cz could be specifically utilized to assess mental health in patients with opioid use disorders. Mechanisms responsible for neuroplasticity involving cortical pyramidal neurons and μ-opioid receptor regulations are discussed within the context of changes in EEG microstates.

Publisher

Hindawi Limited

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3