Computational Challenge of Fractional Differential Equations and the Potential Solutions: A Survey

Author:

Gong Chunye123ORCID,Bao Weimin12,Tang Guojian1,Jiang Yuewen4,Liu Jie3

Affiliation:

1. College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China

2. Science and Technology on Space Physics Laboratory, Beijing 100076, China

3. School of Computer Science, National University of Defense Technology, Changsha 410073, China

4. Department of Engineering Science, University of Oxford, Oxford OX2 0ES, UK

Abstract

We present a survey of fractional differential equations and in particular of the computational cost for their numerical solutions from the view of computer science. The computational complexities of time fractional, space fractional, and space-time fractional equations areO(N2M),O(NM2), andO(NM(M+N)) compared withO(MN) for the classical partial differential equations with finite difference methods, whereM,Nare the number of space grid points and time steps. The potential solutions for this challenge include, but are not limited to, parallel computing, memory access optimization (fractional precomputing operator), short memory principle, fast Fourier transform (FFT) based solutions, alternating direction implicit method, multigrid method, and preconditioner technology. The relationships of these solutions for both space fractional derivative and time fractional derivative are discussed. The authors pointed out that the technologies of parallel computing should be regarded as a basic method to overcome this challenge, and some attention should be paid to the fractional killer applications, high performance iteration methods, high order schemes, and Monte Carlo methods. Since the computation of fractional equations with high dimension and variable order is even heavier, the researchers from the area of mathematics and computer science have opportunity to invent cornerstones in the area of fractional calculus.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3