The Genetic Diversity and Geographic Differentiation of the Wild Soybean in Northeast China Based on Nuclear Microsatellite Variation

Author:

Zhao Hongkun12ORCID,Wang Yumin3,Xing Fu1,Liu Xiaodong3,Yuan Cuiping3,Qi Guangxun2,Guo Jixun1ORCID,Dong Yingshan23ORCID

Affiliation:

1. Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Sciences, Northeast Normal University, Changchun 130024, China

2. Institute of Crop Germplasms, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China

3. Institute of Soybean Research, Jilin Academy of Agricultural Sciences, Changchun 130033, China

Abstract

In this study, the genetic diversity and population structure of 205 wild soybean core collections in Northeast China from nine latitude populations and nine longitude populations were evaluated using SSR markers. A total of 973 alleles were detected by 43 SSR loci, and the average number of alleles per locus was 22.628. The mean Shannon information index (I) and the mean expected heterozygosity were 2.528 and 0.879, respectively. At the population level, the regions of 42°N and 124°E had the highest genetic diversity among all latitudes and longitudes. The greater the difference in latitude was, the greater the genetic distance was, whereas a similar trend was not found in longitude populations. Three main clusters (1N, <41°N-42°N; 2N, 43°N-44°N; and 3N, 45°N–>49°N) were assigned to populations. AMOVA analysis showed that the genetic differentiation among latitude and longitude populations was 0.088 and 0.058, respectively, and the majority of genetic variation occurred within populations. The Mantel test revealed that genetic distance was significantly correlated with geographical distance (r=0.207, p<0.05). Furthermore, spatial autocorrelation analysis showed that there was a spatial structure (ω=119.58, p<0.01) and the correlation coefficient (r) decreased as distance increased within a radius of 250 km.

Funder

National Key Research and Development Program

Publisher

Hindawi Limited

Subject

Pharmaceutical Science,Genetics,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3