Altered Functional Network Affects Amyloid and Structural Covariance in Alzheimer’s Disease

Author:

Chang Ya-Ting1ORCID,Huang Chi-Wei1,Chang Wen-Neng1,Lee Jun-Jun1,Chang Chiung-Chih1ORCID

Affiliation:

1. Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan

Abstract

Background. We aimed to investigate how altered intrinsic connectivity networks (ICNs) affect pathologic changes of Alzheimer’s disease (AD) at a network-based level. Methods. Thirty normal controls (NCs), 23 patients with AD-mild cognitive impairment (MCI), and 20 patients with AD-dementia were enrolled. We compared the organization of grey matter structural covariance and functional connectivity in ICNs between NCs and all AD patients who were amyloid β (Aβ)-positive. We further used seed-based interregional covariance analysis to compare structural and Aβ plaque covariance in default mode network (DMN) between AD-MCI and AD-dementia groups. Results. The patients with AD had increased functional interregional covariance among the regions of the ICN anchored to dorsal caudate (DC) seeds compared to the NCs. The increased connectivity was associated with extended patterns of reduced Aβ plaque covariance in the AD-dementia group compared to the AD-MCI group within the striatal network anchored to DC seeds. Patterns of lower Aβ plaque covariance in the AD-dementia group compared to the AD-MCI group were more extended within the network anchored to DC seeds than within the DMN, which was undergoing functional failure in the patients with AD. Significant decreased structural covariance in the AD-dementia group compared to the AD-MCI group was more extended in the DMN during functional failure. Conclusions. Functional connectivity in ICNs affects the topographic spread of molecular pathologies. The temporal trajectory of pathologic alterations can be well demonstrated by pathologic covariance comparisons between different clinical stages. Pathologic covariance can provide critical support to pathologic interactions at network and molecular levels.

Funder

Chang Gung Memorial Hospital

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3