Robustness and Explainability of Image Classification Based on QCNN

Author:

Chen Guoming1ORCID,Long Shun2ORCID,Yuan Zeduo2ORCID,Li Wanyi1,Peng Junfeng1ORCID

Affiliation:

1. School of Computer Science, Guangdong University of Education, Guangzhou, Guangdong 510303, China

2. Department of Computer Science, Jinan University, Guangzhou, Guangdong 510632, China

Abstract

In this paper, we propose a multiscale entanglement renormalization ansatz (MERA) feature extraction method based on a novel quantum convolutional neural network (QCNN) for binary scanning tunneling microscopy (STM) image classification. We design QCNN quantum circuits for state preparation, quantum convolution, and quantum pooling in the TensorFlow quantum framework and compare the performance of QCNN classifier and two hybrid quantum-classical QCNN models. Adversarial attacks are considered as a type of interpretable method to evaluate the robustness of QCNN models. The similarity between the pixels of image bitplane slicing and Ising phase transition opens up new ways for exploring classification performance enhancement by QCNN classifiers. Classification performance of different bitplanes of QCNN also shows that they can robustly resist adversarial attacks such as FGSM, CW, JSMA, and DEEPFOOL.

Funder

National Basic Research Program of China

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3