Proposing a Graphic Simulator for an Upper Limb Exoskeleton Robot

Author:

Nguyen Thanh-Trung1ORCID,Nguyen Tien1ORCID,Pham Ha2ORCID,Bui Tam2ORCID

Affiliation:

1. Hanoi University of Science and Technology (HUST), Hai Bà Trưng, Hanoi, Vietnam

2. Shibaura Institute of Technology, Tokyo, Japan

Abstract

In this study, a graphic simulator that is used to simulate problems related to kinematics and dynamics for an exoskeleton robot arm with 5 degrees of freedom (DoF) was presented. The graphic simulator utilized the advantages of design software SolidWorks, Catia, and the computing and simulation power of SimMechanics Toolbox in Matlab. The core of the proposed graphic simulator is algorithm to solve the kinematics and dynamic problems of a developing upper-limb rehabilitation robot. The study used the proposed optimization-based algorithm to solve the inverse kinematics (IK) problem for the redundant robot model. Endpoint trajectories were imported from measurement data. The joints variable solutions obtained before entering the dynamics problem were smoothed to ensure feasibility in the later calculation process. A process to solve the inverse dynamics problem using physical model by combining the power of two software SolidWorks and SimMechanics was also proposed. This process ensured that the Robot’s design could be changed and updated to the kinematics calculation fast and easily. To evaluate this procedure, we also compared these dynamics results with results when applying the Lagrange–Euler formulation. All these calculation and simulation processes have been integrated into the graphic simulator software to show efficiency and user-friendliness.

Funder

Ministry of Science and Technology

Publisher

Hindawi Limited

Subject

Biomedical Engineering,Bioengineering,Medicine (miscellaneous),Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3