Design and Optimization of Solar Carport Canopies for Maximum Power Generation and Efficiency at Bahawalpur

Author:

Umer Farhana1ORCID,Aslam Muhammad Shehzad1,Rabbani Muhammad Shoaib1,Hanif Muhammad Javed1,Naeem Nadeem2,Abbas Muhammad Tafseer3

Affiliation:

1. Department of Electrical Engineering, Islamia University of Bahawalpur Pakistan, Pakistan

2. Department of Electrical Engineering, Quaid-e-Awam University of Engineering, Science & Technology, Pakistan

3. O&M Department, Multan Electric Power Company, Pakistan

Abstract

In recent years, the upturn demand of electricity and the generation of electrical power demand from fossil fuels are increasing day by day which results in environmental impacts on the atmosphere by greenhouse gases, and a high cost of electric power from these sources makes it unaffordable. The use of renewable energy sources can overcome this problem. Therefore, in this work, we present a solution by implementing the solar car parking lots. A detailed work has been done for solar car parking site selection and maximum solar electric power generation and its capacity effects with the shading of nearby trees and buildings by using the HelioScope online software developed by Folsom Labs. A detailed optimization and selection of car parking canopies are performed at different standard tilt angles to produce maximum solar photovoltaic energy, and it is analyzed that the monopitch canopy is the best to mount at solar car parking lots at a tilt angle of 10°. We have done a detailed economic analysis which shows that 14% electricity cost was offset by the installation of a solar car parking lot with 17% reduction in annual energy consumption from the grid at the proposed site. The total investment cost of the parking structure and the photovoltaic (PV) system can be paid back in 6-7 years.

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3