Affiliation:
1. College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, China
Abstract
There are many factors that affect short-term load forecasting performance, such as weather and holidays. However, most of the existing load forecasting models lack more detailed considerations for some special days. In this paper, the applicability of the bagged regression trees (BRT) model combined with eight variables is investigated to forecast short-term load in Qingdao. The comparative experiments show that the accuracy and speed of forecasting have some improvements using the BRT than the artificial neural network (ANN). Then, an indicator variable is newly proposed to capture the abnormal information during special days, which include national statutory holidays, bridging days, and proximity days. The BRT model combined with this indicator variable is tested on the load series measured in 2018. Experiments demonstrate that the improved model generates more accurate predictive results than BRT model combined with previously variables on special days.
Funder
Natural Science Foundation of Shandong Province
Subject
General Mathematics,General Medicine,General Neuroscience,General Computer Science
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献