A Genetic Multimutation Model of Autism Spectrum Disorder Fits Disparate Twin Concordance Data from the USA and Canada

Author:

Kramer Ivan1ORCID,Lipkin Paul H.23,Marvin Alison R.3,Law Paul A.45

Affiliation:

1. Physics Department, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA

2. Johns Hopkins School of Medicine, Baltimore, MD 21205, USA

3. Department of Medical Informatics, Kennedy Krieger Institute, 3825 Greenspring Avenue, Baltimore, MD 21211, USA

4. Universite Protestante au Congo, Kinshasa 2, Democratic Republic of the Congo

5. Johns Hopkins School of Public Health, Baltimore, MD 21205, USA

Abstract

Whether autism spectrum disorder (ASD) is caused by genetics, environmental factors, or a combination of both is still being debated today. To help resolve this issue, a genetic multimutation model of ASD development was applied to a wide variety of age-of-onset data from the USA and Canada, and the model is shown to fit all the data. Included in this analysis is new, updated data from the Interactive Autism Network (IAN) of the Kennedy Krieger Institute in Baltimore, Maryland. We find that the age-of-onset distribution for males and females is identical, suggesting that ASD may be an autosomal disorder. The ASD monozygote concordance rate in twin data predicted by the genetic multimutation model is shown to be compatible with the observed rates. If ASD is caused entirely by genetics, then the ASD concordance rate of a cohort of monozygote twins should approach 100% as the youngest pair of twins in the cohort passes 10 years of age, a prediction that constitutes a critical test of the genetic hypothesis. Thus, by measuring the ASD concordance rate as a cohort of monozygote twins age, the hypothesis that this disorder is caused entirely by genetic mutations can be tested.

Publisher

Hindawi Limited

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3