A New Fractal Permeability Model for Porous Media Based on Rough Capillary Channels

Author:

Zhao Yibo1ORCID

Affiliation:

1. School of Data and Computer Science, Shandong Women’s University, Jinan 250300, China

Abstract

Porous media are assumed as a bunch of curved capillaries of rough pore-solid surface, with capillary size distributions and surface roughness following the fractal scaling laws, for which a permeability model is derived to capture both tortuosity and roughness of the pore space in this work. First, the fractal geometry theory and the regarding methods are used to simulate tortuosity and roughness, and then, the permeability of porous media is linked to pore area fractal dimension, tortuosity fractal dimension, relative mean roughness, and other structural parameters (e.g., characteristic length and maximum and minimum pore size). Each parameter in the proposed model has specific physical meaning, which is able to reveal certain mechanisms that affect permeability comprehensively. For several porous media samples, the predicted permeability data based on the current fractal model are compared with the experimental measurement data and the permeability model predictions for other porous media with smooth capillary channels. A good agreement was found between the predicted values of the new permeability fractal model and the experimental data.

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3