Predicting and Investigating the Permeability Coefficient of Soil with Aided Single Machine Learning Algorithm

Author:

Tran Van Quan1ORCID

Affiliation:

1. University of Transport Technology, No. 54 Trieu Khuc Street, Thanh Xuan District, Hanoi, Vietnam

Abstract

The permeability coefficient of soils is an essential measure for designing geotechnical construction. The aim of this paper was to select a highest performance and reliable machine learning (ML) model to predict the permeability coefficient of soil and quantify the feature importance on the predicted value of the soil permeability coefficient with aided machine learning-based SHapley Additive exPlanations (SHAP) and Partial Dependence Plot 1D (PDP 1D). To acquire this purpose, five single ML algorithms including K-nearest neighbors (KNN), support vector machine (SVM), light gradient boosting machine (LightGBM), random forest (RF), and gradient boosting (GB) are used to build ML models for predicting the permeability coefficient of soils. Performance criteria for ML models include the coefficient of correlation R2, root mean square error (RMSE), mean absolute percentage error (MAPE), and mean absolute error (MAE). The best performance and reliable single ML model for predicting the permeability coefficient of soil for the testing dataset is the gradient boosting (GB) model, which has R2 = 0.971, RMSE = 0.199 × 10−11 m/s, MAE = 0.161 × 10−11 m/s, and MAPE = 0.185%. To identify and quantify the feature importance on the permeability coefficient of soil, sensitivity studies using permutation importance, SHapley Additive exPlanations (SHAP), and Partial Dependence Plot 1D (PDP 1D) are performed with the aided best performance and reliable ML model GB. Plasticity index, density > water content, liquid limit, and plastic limit > clay content > void ratio are the order effects on the predicted value of the permeability coefficient. The plasticity index and density of soil are the first priority soil properties to measure when assessing the permeability coefficient of soil.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3