A Generative Clustering Ensemble Model and Its Application in IoT Data Analysis

Author:

Du Hangyuan1ORCID,Wang Wenjian1,Bai Liang2,Feng Jinsong3

Affiliation:

1. School of Computer and Information Technology, Shanxi University, Taiyuan, 030006 Shanxi, China

2. Institute of Intelligent Information Processing, Shanxi University, Taiyuan, 030006 Shanxi, China

3. Taiyuan Urban and Rural Administration Bureau, Taiyuan, 030002 Shanxi, China

Abstract

Data analysis is the foundation of Internet of Things (IoT) based applications, and clustering is an effective technology of data analysis. Clustering ensemble integrates multiple base clustering results to obtain a consensus result and thus improves the clustering performance in stability and robustness. However, it is difficult for existing clustering ensemble algorithms to achieve a satisfying ensemble result, when the base clustering results are unreliable. Concerning this problem, we develop a new clustering ensemble model in this paper, which has several advantages compared with traditional algorithms: (i) structure information about the data is effectively extracted from the base clusterings; (ii) data characteristics and structure information are integrated in an elegant fashion, in the production of the consensus clustering result; and (iii) our model has the generative ability that makes the model achieve outstanding performance when training samples are insufficient. In our model, the structural information is extracted by explicating the coupling relationships between base clusterings and between samples in clustering members. Then, data characteristics and structure information are combined in a generative graph representation learning framework. And the objectives of representation learning and consensus clustering are integrated into a unified optimization model, in which the prior distribution of the data is approximated by a Gaussian mixture model (GMM). Extensive experiments are conducted on multiple IoT datasets; the results prove that our model not only performs better than the conventional clustering ensemble algorithms but also outperforms the state-of-the-art deep clustering methods.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An improved weighted ensemble clustering based on two-tier uncertainty measurement;Expert Systems with Applications;2024-03

2. Analysis of Data using hybridized K-means clustering with PSO-JAYA algorithm;2023 International Conference on Advances in Electronics, Communication, Computing and Intelligent Information Systems (ICAECIS);2023-04-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3