Silencing of B4Galnt1 Gene Prevents GM2 Accumulation in Tay-Sachs Cells

Author:

Ateş Nurselin1ORCID,İnci Orhan Kerim1ORCID,Demir Seçil Akyıldız2ORCID,Seyrantepe Volkan12ORCID

Affiliation:

1. Izmir Institute of Technology, Molecular Biology and Genetics Department, Gulbahce Campus, Urla, 35430 İzmir, Türkiye

2. Izmir Institute of Technology, IYTEDEHAM, Gulbahce Campus, Urla, 35430 İzmir, Türkiye

Abstract

Introduction. The Tay-Sachs disease (TSD) is a progressive neurodegenerative disorder resulting from genetic mutations in the HEXA gene encoding the α-subunit of β-hexosaminidase A leading to the accumulation of GM2 ganglioside in the central nervous system. Multiple therapeutical strategies have been investigated such as gene therapy for Tay-Sachs patients; however, there is still no cure. In the present study, we suggest a new approach for the treatment of the Tay-Sachs disease with the concept of substrate reduction therapy by using AAV9-mediated RNAi technology targeting the B4Galnt1 gene at the upstream of the enzymatic defect in TSD pathology to decrease GM2 biosynthesis and accumulation in cell models of TSD. Material and Methods. We employed AAV9-mediated shRNA transduction for mice and human Tay-Sachs cells. After transduction, expression levels of ganglioside metabolism genes were analyzed by RT-PCR and GM2 and lysosome-associated membrane protein 1 (LAMP1) protein levels were evaluated by immunocytochemistry analysis. Results. Here, we have shown that AAV9-shRNA transduction effectively reduced B4Galnt1 expression in TSD cells demonstrating a reduction in GM2 accumulation and LAMP1. Discussion. Our data shows that AAV-mediated B4Galnt1-shRNA transduction can ameliorate disease pathologies by decreasing the lysosomal accumulation of GM2 through selectively reducing B4Gant1 activity in cell models of the Tay-Sachs disease. Therefore, we suggest promising novel experimental therapy for this devastating disease using a mouse model in the future.

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3